Showing posts with label E. coli. Show all posts
Showing posts with label E. coli. Show all posts

Saturday, July 2, 2011

Sup July? SUP SUCCESSFUL TRANSFORMATIONS?

I've been having trouble transforming E. coli cells with my plasmid vector, within which is a small DNA fragment (my NiR terminator) that I will want to restriction cut out. By transforming bacteria with the plasmid vector, I'll make additional copies of the plasmid and be able to freeze and save the plasmid for later use if necessary.

My lab mates and I spent several weeks trying to figure out why our transformations were doing so poorly and why we were receiving such low plasmid yields from transformed bacteria. I myself figured out that one problem was the ampicillin used to make the agar plates upon which we grow our bacteria had degraded over time, and that the antibiotic was not selecting strongly enough to weed out bacteria with plasmids and bacteria without plasmids. This is the reason why we were not getting good plasmid yields and another reason why our bacteria were not growing when transferred from "old" plates to new agar plates with freshly made ampicillin.

We also concluded that the bacteria cells we were transforming were not up to par to yield the results we needed, so we ordered some new transformation kits.

But in order to successfully clone PCR product into a plasmid vector to transform into bacteria, the PCR product needs to be freshly made. In order to get new PCR product, I re-amplified older PCR product in the same reaction I ran before. I ran four different reactions using the PCR DNA in four different DNA concentrations: 1:1, 1:10, 1:100, & 1:1,000 (lanes 2, 3, 4 & 5 in the picture below respectively). This way I can determine which reaction had too much starting DNA and too little. After my reaction, I ran part of it on a gel to see how each reaction went. I definitely got much larger yields in the 1:1 & 1:10 dilutions (there was probably too much DNA even), so I used the second dilution (1:100, lane 4) to clone into the plasmid vector.

I used PCR product from lane 4 to clone into a vector plasmid for the transformation.
Using the vector plasmid, I transformed them into the bacteria and let them grow over night on an agar plate. I then performed a colony screen, which is a PCR reaction using single bacteria colonies to supply the DNA. That PCR reaction yielded the below gel:

While this is a slightly messy colony screen gel, several of these colonies should suffice!

What we're seeing in this gel is the molecular ladder at the top and then 10 different colony screen reactions. They're pretty streaky, which is probably because there was a lot of bacterial DNA in each PCR reaction. What I wanted was a single band at around 700 basepairs, which is roughly half way between the two second most right bands on the ladder. As such, lanes 4, 6, 7 & 8 are good candidates for colonies that have my plasmid with the correct insert.

BRB time for the holiday weekend!

Tuesday, June 14, 2011

It's Transformation Time.

Last time I checked in, my PCR reactions that were supposed to add restriction sites to either end of the nitrite reductase (NiR) terminator region appeared to work and work well. When I ran the PCR reactions on a gel, the amplified DNA bands were really strong and were the correct length.
This gave me the go ahead to continue the path in isolating & altering the NiR terminator in order to yield a sequence of DNA to fit the final NiR plasmid for my project's experiments.

Now I need to insert the NiR terminator into a vector plasmid, transform it into bacteria, and digest the NiR terminator back out of the plasmid to double check that the terminator I got on the gel from my PCR reaction (above) is the correct piece of DNA before I insert it into the NiR plasmid to complete the final NiR plasmid.

We use bacteria to amplify pieces of DNA because of their quick generation times. If you insert a plasmid into bacteria, they will duplicate the plasmid as if it were their own DNA as they grow and divide. A plasmid is a ring of DNA, which is essential for this to work, because bacteria will cut up and destroy any loose pieces of linear DNA. In order to get our NiR terminator to be duplicated by the bacteria, we insert it into a vector plasmid first. The vector plasmid is designed to accept small pieces of DNA from PCR reactions, lock in that piece of DNA within the plasmid. This plasmid can then be transformed into bacteria.

Bacterial transformation is really easy. Once the vector plasmid complete with our PCR DNA is ready, we add the plasmids to specially-altered E. coli cells, incubate the cells on ice for a short time (to lull them into a false sense of security), and then transfer them to a hot water bath (42°C) for thirty seconds. Thirty seconds is all we need for the bacteria cells to panic and scream "WHAT IS HAPPENING TO ME?" This prompts the bacteria, because they are stressed, to take up any DNA in their environment. Well good thing the only DNA in their environment is the plasmid we gave them! Through the heat shock, a large amount of bacteria should have taken up our plasmid. We then grow the bacteria over night while they recuperate, divide exponentially, and make copies of our plasmid. This process is summarized by the cartoon below:

Wednesday, June 1, 2011

What's up PCR reaction that finally worked!?

BAM! LOOK AT THOSE BANDS!

Three PCR reactions, three beautiful bands. Looks like digesting the insert and then amplifying it really did the trick. This means I can use my PCR reaction to transform some bacteria!

The idea is to insert our PCR reaction into a plasmid vector, which we then transform into E. coli. We do this via heat shock, which causes the bacteria cells to take up plasmids. We then will grow the E. coli, conduct a plasmid prep to collect all of the plasmids they grew, and then I will perform another digest to recut out the terminator region (the PCR product). This way, I can be sure the restriction sites were correctly added onto the terminator region, which I need in order to insert it into the rest of the plasmid I already have.

I'm transforming the cells as I write this, and will be back soon to give updates. Yay science!